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Introduction

The role of neurons, oligodendroglia, microglia,
and infiltrating inflammatory cells (monocytes and
neutrophils) as well as cytokines, growth factors,
protease inhibitors, myelin membrane proteins, ex-
tracellular matrix or adhesion receptor systems in
central nervous system (CNS) regeneration are
under intensive study in many laboratories (for
review, see Hatten et al., 1991). Our research is
focused on the role of the astrocyte in CNS injury
and disease. Astrocytes comprise as much as 25% of
the cells and 35% of the total mass of the CNS.
Astrocytes form barriers around blood vessels and
connections between nerve cells. Numerous func-
tions have been assigned to the astrocyte depending
on its stage of maturation, location in the CNS, and
response to CNS insult. These functions for the
most part attempt to maintain and support the nor-
mal function of the CNS. In some instances,
however, these beneficial responses may compete
and inhibit the regeneration response of the oligo-
dendrocytes and neurons. There are several reasons
why astrocytes may not support CNS regeneration
(Reier and Houlé, 1988). (1) Astrocytes may not
provide the necessary tropic and/or trophic sup-
port for axonal regeneration. (2) Rapid astrogliosis
forms a physical barrier of astrocytes which rapidly
occupies the space caused by the injury and thus
prevents remyelination and axonal migration. (3)
Glial scars may lack the appropriate cell surface
properties for neuronal interactions. (4) Glia in the

mature CNS may not synthesize the extracellular
matrix molecules that are conducive to axonal out-
growth. (§) Astrocytes and/or other constituents of
glial scars may not have the appropriate proteolytic
mechanisms. (6) Astrocytes induce the formation of
pre-synaptic terminals. (7) Astrocytes may produce
inhibitors of axonal extension or neuronal migra-
tion.

Of current interest are the reports that a mem-
brane protein of CNS myelin inhibits neurite growth
in vitro (Schwab and Caroni, 1988; Schwab, 1990)
and that inhibitory molecules have been isolated
from oligodendrocytes (Pesheva et al., 1989). Bovo-
lenta et al. (this volume) have also identified in-
hibitory molecules from cellular membranes isola-
ted from glial scar tissue. The failure of axons to
penetrate scars is likely, at least in part, to result
from inhibitory factors derived from oligodendro-
cytes, astrocytes, microglia, or immune cells present
at the site of injury. Experiments suggesting that the
astrocytic scar may not form a barrier to axon re-
growth come from in vivo studies (Silver and Sid-
man, 1980; Kliot et al., 1990) and in vitro studies
which provide evidence that astrocytes support ax-
onal growth (Lindsay, 1979; Noble et al., 1984;
Fallon, 1985; Gage et al., 1988; Neugebauer et al.,
1988; Hatten, 1989). More recent studies suggest
that astrocytes that are not favorable for axonal
growth, are substrates for neurite growth (Lindsay,
1979; Baehr and Bunge, 1990). Evidence that axons
grow well on glial scars has recently been reported
(David et al., 1990). In another type of in vitro



354

study, Rudge and Silver (1990) demonstrated that
the glial scar, at best, stimulates only minimal
neurite outgrowth over its surface as compared to
the immature environment explanted in the same
manner. Presently the in vivo evidence that the glial
scar supports regeneration presents a mixed impres-
sion. The in vitro evidence, while quite extensive, is
a two-dimensional model which agrees well with
three-dimensional in vivo observations which show
that axons do not penetrate the glial barrier but grow
along the surface of the scar. It is evident that
regeneration at the site of a CNS lesion is complex
and involves factors which promote and inhibit ax-
onregrowth. It has been suggested that too much at-
tention has been focused on astrocytes and glial
filaments (Hatten et al., 1991), however, the glial
barrier hypothesis remains one of the important
problems in CNS regeneration. Therefore, methods
which inhibit or delay the astrogliotic response merit
continued investigation.

Reactive astrocytes

Anytype of insult to the CNS can induce astrogliosis
whether it results from physical trauma such as a li-
quid nitrogen lesion (Amaducci et al., 1981), light-
induced photoreceptor degeneration in the rat retina
(Eisenfeld et al., 1984) or spinal cord transection
(Reier, 1986), immunologic cellular insult such as
experimental allergic encephalomyelitis (EAE)
(Smith et al., 1983), Creutzfeldt-Jakob disease
(CJD) infection (Manuelidis et al., 1987) or bio-
chemical alteration due to a genetic defect (Eisen-
feld et al., 1984). When the blood-brain barrier is
disrupted, numerous factors can activate the astro-
cytes: (1) anoxia may occur due to interruption of
the blood supply; (2) dilution of inhibitory ‘chalo-
nes’’ around the site of edema may occur; (3) blood-
born substances such as complement components
- can enter the CNS; (4) cell-derived substances from
infiltrating cells can be released; macrophages and
activated microglia express mediators such as in-
terleukin 1, tumor necrosis factor, prostaglandins,
leukotrienes, neutral proteinases such as plasmino-
gen activator and other myelin degrading enzymes,

and cytotoxic agents such as oxidative radicals; (5)
mitogenic and non-mitogenic substances from de-
generating neurons and fibers can be released; and
(6) astrocytes can be released from contact inhibi-
tion due to increase in space.

The reactive astrocyte undergoes numerous cyto-
logical, histochemical and biochemical features, in-
cluding: increases in nuclear diameter (Hortega and
Penfield, 1927; Cavanagh, 1970), elevated DNA
levels (Lapham and Johnstone, 1964), accumula-
tion of intermediate filaments (Nathaniel and Nat-
haniel, 1977), elevated oxidoreductive enzyme ac-
tivity (Ohmichen, 1980) and increased synthesis of
glial fibrillary acidic protein (GFAP) (Bignami and
Dahl, 1976; Amaducci et al., 1981), vimentin (Dahl,
1981; Dahl et al., 1981, 1982), glutamine synthetase
(Norenberg, 1983), and glycogen (Nathaniel and
Nathaniel, 1981).

Some signals which regulate gene expression in
development and response to astrocyte injury are:
growth factors, prion protein from Scrapies, neural
and immunological adhesion molecules such as
NCAM, LFA-1, gangliosides, low density lipopro-
teins, cytokines from T-cells, macrophages and
other glia, neurotransmitters and neuropeptides
such as catecholamines, monoamines, glutamate,
ATP, substance P, and antigen-antibody com-
plexes. Astrocytic responses to these signals include:
(1) proliferation, movement and differentiation; (2)
changes in shape, cell volume, cytoskeletal organi-
zation, endocytic activity, lysosomal fragility and
enzyme content; (3) buffering capacity for K+, glu-
tamate and GABA; (4) expression of nerve growth
factor, tumor necrosis factor, interferon « and 3, in-
terleukin 1 and 6, colony stimulating factor-1,
fibroblast growth factor, neurotropic factors,
neurite promoting agents, MHC class I and II
histocompatibility antigens, amyloid protein, GD3
ganglioside, ICAM-1, Nat channel protein,
GFAP, crystallin, vimentin and heat shock pro-
teins.

Astrogliosis

Reactive astrogliosis is a stereotypic reaction of



astrocytes within and adjacent to the site of injury.
Italso occurs in CNS demyelination such as multiple
sclerosis (MS) and the degenerative diseases —
Alzheimer’s disease, CJD, and Huntington’s
disease. Astrogliosis is characterized by astrocyte
proliferation and extensive hypertrophy of the cell
body and cytoplasmic processes. Astrogliosis may
participate in the healing phase following CNS in-
jury by actively monitoring and controlling the
molecular and ionic contents of the extracellular
space of the CNS. They can wall off areas of the
CNS that are exposed to non-CNS tissue en-
vironments following trauma. On the other hand,
astrogliosis may have pathological effects by in-
terfering with the function of residual neuronal cir-
cuits, by preventing remyelination, or by inhibiting
axonal regenecration (Eng et al., 1987; Reier and
Houlé, 1988).

GFAP is the intermediate filament in differen-
tiated astrocytes. Extensive use of mono- and
polyclonal antibodies to GFAP in neurobiology has
established GFAP as a prototype brain antigen in
CNS immunocytochemistry and as a standard
astrocyte marker for neuroscience research (Eng,
1985; Eng and Shiurba, 1988). Astrogliosis is
characterized by extensive synthesis of GFAP in-
termediate filaments and by hypertrophy of the
astrocytic cytoplasmic processes. The functional
significance for this increase in intermediate fila-
ments (IFs) is not known. Evidence from studies
with rat optic nerve astrocyte cultures suggests that
the content and subcellular distribution of IFs are
important for cytoplasmic process formation and
for structural stability of astrocytes. The relatively
slow metabolic turnover rate for GFAP is consistent
with such a structural role (DeArmond et al., 1983,
1986; Smith et al., 1984b). Ultrastructural and im-
munocytochemical studies of astrocytic differentia-
tion in vitro show that the flat, polygonal astroblast
contains abundant microtubules and actin stress
fibers; however, these elements progressively de-
crease while GFAP increases during the change in
shape of this astroblast to a stellate cell having
slender, unbranched processes (Ciesielski-Treska et
al., 1982a,b; Trimmer et al., 1982; Fedoroff, 1985).
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A recent study provides further evidence for a struc-
tural role for GFAP. Weinstein et al. (1991) per-
manently transfected a human astroglioma cell line
with an antisense GFAP DNA construct and showed
that this cell could no longer synthesize GFAP or
form processes in response to neurons in culture.

Increased protein content or immunostaining of
GFAP have been found in experimental models in-
volving gliosis, such as the cryogenic lesion (Ama-
ducci et al., 1981), stab wounds (Latov et al., 1979;
Mathewson and Berry, 1985; Takamiya et al., 1986,
1988; Jeneczko, 1988; Miyake et al., 1988; Topp et
al., 1989; Hozumi et al., 1990; Vijayan et al., 1990),
toxic lesions (Brock and O’Callaghan, 1987; Rein-
hard et al., 1988; Rataboul et al., 1989), and EAE
(Smith et al., 1983, 1984a; Goldmuntz et al., 1986;
Aquino et al., 1988a,b). Increases in mRNA to
GFAP have been reported in normal rat brain devel-
opment (Tardy et al., 1989; Landry et al., 1990), as
well as mechanical rat brain injury (Condorelli et
al., 1990; Steward et al., 1990), toxic lesions (Rata-
boul et al., 1989) and in EAE (Aquino et al., 1990)
consistent with de novo synthesis of GFAP protein
being involved in these responses to injury.

GFAP and the glial barrier hypothesis

Our current investigations are directed toward
characterization of the normal functions and prop-
erties of the astrocyte and the specific factors which
induce its reactive response to injury in cultured
astrocytes and injured rat spinal cord. The rapid for-
mation of an astrocytic scar at the site of spinal cord
injury may form a physical barrier which prevents
regeneration. The most prominent feature of
astrocytic gliosis is the accumulation of GFAP, the
intermediate filament of differentiated astrocytes.
Our working hypothesis is that control of astrocyte
proliferation, differentiation, and astrogliosis may
be linked to GFAP synthesis. One might be able to
modulate astrogliosis to promote healing and func-
tional recovery of neuronal pathways. For example,
inhibition of GFAP synthesis immediately follow-
ing injury might delay astrogliosis. A delay in
astrogliosis may allow neurons the opportunity to
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regenerate and oligodendrocytes to proliferate and
remyelinate.

Alternatively even if gliosis were delayed, the en-
vironment might not be conducive for regeneration.
Astrocytes in immature neural tissue have been
shown to migrate and are thought to have a
restorative role when they are introduced into the
glial scar (Smith and Miller, 1991). It is possible that
such enhanced CNS restoration may be due to fac-
tors produced in embryonic neural tissue which are
no longer produced in significant amounts in
mature, fully differentiated neural tissue. Astro-
cytes in culture have been shown to produce growth
factors such as 3 nerve growth factor (3NGF), basic
fibroblast growth factor (bFGF), and platelet-de-
rived growth factor 8 (PDGF (). We are combining
molecular biological approaches and immunochem-
ical and biochemical detection systems with high
resolution nuclear magnetic resonance microimag-
ing (NMRI) of lesions in vitro and in situ to gain new
perspectives on neural regeneration.

Experimental allergic encephalomyelitis

Experimental allergic encephalomyelitis (EAE), a
cell-mediated autoimmune disease, has been the
principal experimental model for studying the
etiology and pathogenesis of multiple sclerosis (MS)
(Smith et al., 1984a, 1987, 1988; Eng et al., 1986a;
Smith and Eng, 1988). Astrocyte proliferation and
hypertrophy of cell processes appear very early in
this model, coincidentally with the first inflam-
matory foci and is apparent by an increase in im-
munostaining of the astrocytes with GFAP an-
tibodies without an increase in GFAP content
(Smith et al., 1983; Goldmuntz et al., 1986). A more
recent report has shown that the increase in GFAP
immunoreactivity of the astrocytes without a cor-
responding increase in GFAP content observed in
EAE during the first 13— 18 days post-inoculation
is not due to an increase in GFAP epitopes resulting
from limited proteolysis, glial filament dissociation
yielding an aqueous soluble fraction, or to dif-
ferences in the avidity of a number of different an-
tibody preparations tested (Aquino et al., 1988a,b).

In acute EAE, the increase in GFAP immunostain-
ing of the astrocytes is wide spread and not confined
to lesion sites (Smith et al., 1983). With chronic
relapsing EAE in the mouse, astrocyte activation
and gliotic scar formation appears in areas at the
vicinity of the inflammatory lesion (Smith and Eng,
1987). The reason for astrocyte hypertrophy and in-
creased immunostaining for GFAP without a
demonstrable increase in GFAP content is
unknown. The onset of edema due to disruption of
the blood-brain barrier (BBB) and leakage of blood-

“borne substances into the CNS (Levine et al., 1966;

Cutler et al., 1967; Juhler et al., 1984) may con-
tribute to these phenomena. Swollen astrocytic pro-
cesses filled with disrupted bundles of glial filaments
and glycogen particles have been shown by electron
microscopy in edematous brain tissue (Kimelberg et
al., 1982).

Recently we examined the early EAE lesion by
electron microscopy and obtained results similar to
that reported by Kimelberg et al. (1982). The
astroglial processes contained many glycogen par-
ticles. The glial filaments were arranged in small
bundles or loose thin filaments adjacent to the
bundles. The glial filaments that normally appear as
tight bundles expanded and appeared less dense.
The general picture indicates that the first stages of
EAE are pathogenetically related to an abnormal
BBB permeability. The ‘‘watery’’ cytoplasm of
astrocytes at this early stage of EAE is most likely
expressing a ‘‘partial’’ breakdown of the BBB which
is characterized by the absence of anatomical abnor-
malities of the vascular walls and the presence of in-
tracellular (astrocytic) edematous fluid (Lee, 1982;
Miquel et al., 1982). ‘‘Leaky’’ vascular walls
together with the injury of astroglial membranes
may induce metabolic disturbances through the in-
flux of edema fluid which may contain potassium,
biogenic amines, prostaglandins and their im-
mediate precursor arachidonic acid, free radicals
and glutamate among other components (Bourke et
al., 1980; Chan and Fishman, 1985; Halliwell and
Gutteridge, 1985; Wahl et al., 1988). We have sug-
gested that the increase in GFAP immunostaining
without an increase in GFAP content is due primari-



ly to the disruption of the blood-brain barrier. The
resulting edema allows the tight bundles of glial
filaments to dissociate and thus expose more an-
tigenic sites (epitopes) to GFAP antibodies (Eng et
al., 1988, 1989). The ensuing migration of cells with
the ability to release cytokines (Waksman and
Reynolds, 1984) contributes to the continuation of
this process in the astrocytes.

As a result of our immunohistochemical, light-
microscopic and ultrastructural study of the EAE
rat spinal cord (D’ Amelio et al., 1989), we have sug-
gested that the pathogenesis of EAE involves the
following sequence of events. (1) Edema induced by
partial breakdown of the BBB that affect predomi-
nantly astrocytes which exhibit increased GFAP im-
munoreactivity due to dissociation of glial filaments
and consequent exposure of more antigenic sites. (2)
With further disruption of the BBB, ‘‘activated”’
lymphocytes and blood-borne macrophages pene-
trate the vascular endothelium ‘‘en route’’ to the
neuropil. (3) Myelin breakdown is initiated by ma-
crophagic activity upon oligodendroglia and myelin
sheaths. Macrophages in the tissue are derived from
the blood, pericytes and microglia. (4) Demyelina-
tion is enhanced by the ability of microglial cells/
macrophages to express Ia-antigens induced by the
secretion of factors (INF-v) from ‘‘activated’’ lym-
phocytes. (5) Finally, the demyelinated areas be-
come filled with fibrous astrocytes which form the
glial scar.

Antisense oligonucleotides

Synthetic oligonucleotides have been used success-
fully to inhibit DNA replication, retroviral replica-
tion, pre-mRNA processing and protein synthesis
with high specificity. Different mechanisms for the
inhibitor effects have been proposed (Chrisey,
1990). The antisense oligonucleotides are comple-
mentary to the selected RNA target and are general-
ly between 15 and 30 nucleotides in length, which is
sufficient to define a unique sequence. Synthetic
oligomers may be actively transported into cells and
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lead to irrevisible antisense effects. They also allow
a control on the number of antisense molecules that
enter the cell (Cohen, 1989; Chrisey, 1990). Not all
oligonucleotides are suitable for antisense studies
due to their inherent instability, inefficient.uptake,
and degradation by exo- and endonucleases. Phos-
phorothioate (Agrawal et al., 1989a,b; Cazenave et
al., 1989; Mori et al., 1989; Paules et al., 1989),
methylphosphonates (Miller et al., 1985a,b; Kean et
al., 1988; Agrawal et al., 1989a,b; Brown et al.,
1989) , O-alkylphosphotriesters (Moody et al.,
1989a,b) and a-anomeric DNA (Gagnoret al., 1989;
Lavigon et al., 1989) are chemically modified oligo-
nucleotides with substantial improvement in stabili-
ty, uptake and nuclease resistance (Chrisey, 1990).
In general, phosphorothioate DNA oligomers are
more potent inhibitors than phosphodiester oli-
gomer a-anomeric DNA and methylphosphonates
(Agrawal et al., 1989a,b; Cazenave et al., 1989;
Mori et al., 1989; Paules et al., 1989). Addition of
“‘reactive’’ molecules (intercalator, photochemical-
ly activated cross-linking or cleaving agents, alkyl-
ating agents, or redox active nucleic acid cleaving
groups) (Asseline et al., 1985; Helene, 1987; Vlassov
et al., 1988a,b; Amirkhanov and Zarytova, 1989;
Boutorin et al., 1989; Pieles and Englisch, 1989) will
either stabilize the hybrids and/or permit damage of
the target nucleic acid. Other modifications include
the attachment of poly-L-lysine (Chu and Orgel,
1988) or lipophilic moieties (Boutorin et al., 1989;
Letsinger et al., 1989; Kabanov et al., 1990) to in-
crease hydrophobicity and promote uptake. An-
other approach has been to encapsulate the oligo-
nucleotides in liposomes which protect them from
attack by nucleases and facilitate cellular uptake
(Loke et al., 1988; Leonetti et al., 1990; Eng et al.,
1991; Yu et al., 1991). Other potential antisense
agents include synthetic RNA and ribozymes (Ha-
seloff and Gerlach, 1988; Cameron and Jennings,
1989) 2’ -O-methylribose RNA is resistant to RN-
ases. Ribozymes can be designed to irreversibly
damage a specific substrate RNA molecule, and
thus represent an exciting new class of antisense
molecules.



358

Introduction of DNA into primary cultures of
astrocytes with Lipofectin™

Primary astrocytes grown in 35 mm plastic dishes
were fed deoxyribonucleic acid complexed with a
commercial cationic liposome preparation, Lipo-
fectin™ reagent (LF). Astrocytes exposed to 11
and 17 ug LF for 24 h excluded trypan blue indica-
ting that the cells were intact. Astrocytes treated
with 34 ug LF showed a loss of cell integrity and
many of them were stained with trypan blue. Similar
cultures of astrocytes exposedto 11 and 17 ug LF for
30 h released 7—10% of the intracellular lactate
dehydrogenase (LDH). Four hours of exposure to
34 ug LF induced a 2% LDH release which was in-
creased to 15—20% after 8 h. A non-toxic dose of
11 pg was chosen to mediate the uptake of nucleic
acids. After 30 min exposure to LF/photo-biotinyl-
ated ADNA, astrocytes were positively immuno-
stained with antibody to biotin. Uptake of LF/3H-
ADNA in astrocytes was rapid and reached an equi-
librium (3.25 ng/mg protein) within 30 min. ADNA
alone entered astrocytes slowly with an equilibrium
1/6 of the LF/DNA complex. The uptake of LF/
DNA for glial fibrillary acidic protein and LF/
DNA for neurofilament (NF) were comparable to
ADNA. Astrocytes transfected with LF/NF-DNA
showed a detectable level of NF by enzyme-linked
immunosorbent assay. This observation indicated a
transient expression of the transfected NF-DNA in
cultured astrocytes (Eng et al., 1990).

Inhibition of GFAP synthesis with antisense RNA
in cultured astrocytes

Antisense GFAP mRNA uptake by cultured
astrocytes

Astrocytes cultured in 35 mm plastic dishes with
2 ml of medium and exposed to biotinylated an-
tisense GFAP RNA showed positive reaction with
antibody to biotin by immunohistology. The stain-
ing was observed as early as 30 min of exposure to
the complex. No staining was observed in cultures
exposed to LF or biotinylated antisense RNA alone
demonstrating that LF facilitated the entry of an-

tisense GFAP RNA into astrocytes. SH-Antisense
RNA alone entered astrocytes even in the absence of
LF. Between 2.5 and 6 h of exposure, astrocytes
took up 7 — 8.8 5g antisense RNA per mg protein,
with an uptake efficiency of 3.4%. The uptake was
accelerated and enhanced when antisense RNA was
complexed with LF. In Dulbecco’s Modified Eagle
Medium (DMEM), the time for astrocytes to take up
a similar amount of antisense RNA in LF as com-
pared to antisense alone was shortened to 10 min.
The total uptake was also elevated to 14 g/mg pro-
tein in a 6 h experimental period, within an uptake
efficiency of 5.6%. When the LF complex was in-
cubated in Hepes buffered saline (HBS), the amount
of antisense RNA that entered the astrocytes almost
doubled (> 20 »g/mg protein) in 10 min of trans-
fection, and the uptake efficiency was increased to
almost 10%.

The uptake of antisense RNA was increased when
the dose of antisense RNA in the LF complex was
elevated. The uptake of antisense RNA alone after
1 hincubation was low with an uptake efficiency of
about 1.5%, despite the increased doses. With LF as
a mediator, the uptake was higher than antisense
RNA alone. In HBS, the LF complex uptake effi-
ciency averaged 7.6%, higher than 2.9% in DMEM.
The uptake efficiency remained the same at doses up
to 15 ug. The initial uptake rate in HBS reached an
optimal efficiency within 10 min and was always
higher than the complex in DMEM which in turn
was higher than for antisense RNA alone. At least
6 h were required to achieve optimal efficiency. The
data also showed that the 11 ug of LF inthe complex
could introduce a large amount of antisense RNA
into astrocytes.

Effects of antisense RNA on GFAP synthesis in
dBcAMP treated culture

Cultures of astrocytes treated with 0.25 mM of
dibutyryl adenosine 3’,5'-cyclic monophosphate
(dBcAMP) showed an increase in GFAP content
over an 8 day experimental period. The GFAP con-
tent in astrocytes at day 0 (i.e., immediately before
transfection) was used as the control and the
changes were expressed as percent increase or de-
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Fig. 1. Effect of LF/antisense GFAP RNA transfection on the
GFAP content of astrocytes in cultures. Cultures were incubated
in DMEM contained 0.25 mM dBcAMP and 10% serum for 2
days before transfected for 3 hin HBS. Then all cultures were in-
cubated in DMEM contained dBcAMP supplemented with (4) or
without (B) serum. GFAP content was quantitated by ELISA.
The GFAP contents in transfected (CJ; M) and non-transfected
(O, @) cultures were expressed as the percentage of the value at
day 0. One milliliter of complex contained 6 ug antisense RNA
and {1 ug of LF. Each point was average of four measurements
and S.E.M. values are shown by vertical bars if they extend
beyond the symbols. (Taken from Yu et al., 1991.)

crease with respect to this value (Fig. 1). In serum-
free medium, a rapid increase in GFAP content in-
duced by dBcAMP was observed. The increase
reached about 160% on day 3, then remained at this
level for the rest of the experiment. In serum-
containing medium, the stimulation by dBcAMP
was delayed and a gradual increase was observed
after 2 days. The GFAP content employing serum-
containing medium also reached a level greater than
160% of the control at the end of the experiment.
Although dBcAMP was in the culture medium,
all transfected cultures showed a decrease in GFAP
content, the decrease being more pronounced in
cultures maintained in serum-free medium. One day
after transfection, a 30% decrease in GFAP content
was achieved. The content was further decreased to
less than 50% of its original level after the third day
of transfection. In serum-containing medium, a sig-
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nificant decrease in GFAP content of 30% was ob-
served 3 days after transfection. The GFAP content
began to return gradually to the day 0 level 5 days
after transfection in some cultures but never reached
a level comparable to the corresponding non-trans-
fected sister cultures. A similar result was observed
in cultures of astrocytes exposed to a chemically
defined medium, a condition also known to increase
the GFAP content of astrocytes in culture (Mor-
rison et al., 1985). Antisense RNA alone and com-
plexes with lower doses of antisense RNA (< 3 ug
per culture) did not induce any observable effect on
the GFAP content. The inhibition was further con-
firmed by separating the total cellular protein with
SDS-PAGE, transblotting to nitrocellulose and es-
timating the changes in GFAP content by immuno-
peroxidase staining with antibody to GFAP. Results
indicated that the GFAP content was clearly de-
creased in cultures 3 days after transfection. The
content gradually returned to the day O level but re-
mained lower than comparable non-transfected
cultures.

Inhibition was not detected in cultures transfected
with antisense RNA alone, nor with low doses
(< 3 pg)ofantisense RNA in LF complex. Weak in-
hibition was observed in some cultures transfected
with a complex which contained 3 pg antisense
RNA. Only with complexes containing 6 pg of an-
tisense RNA was the inhibition of GFAP synthesis
significant and reproducible. With a 7.6% uptake
efficiency, 450 ng of antisense RNA entered the
culture. Based on our previous findings (Eng et al.,
1990), at least 1/6 of this antisense RNA (75 5g)
would be available to hybridize with the sense GFAP
mRNA (Eng et al., 1991; Yu et al., 1991).

Discussion

The method for controlling gene expression with an-
tisense nucleic acid has already provided a powerful
tool for identifying genes, characterizing gene func-
tions, controlling virus and parasite infections, and
manipulating metabolic pathways (Agris et al.,
1986; Smith et al., 1986; Morvan et al., 1987;
Thuonget al., 1987; Le Doan et al., 1989). The pres-
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